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Equation of state for a partially ionized gas
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The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from
a fundamental point of view. First, a cubic cellular model and then a spherical cellular model is deduced for the
hot curve limit(or ideal Fermi gas Next the Coulomb interactions are added to the spherical model for general
ionic chargeZ. A numerical example of the theory for the case of hydrogen is reported, and it reduces in
various limits of temperature and density to the expected behavior. It displays an electron, localization-
delocalization phase transition of the normal liquid-gas chara$d063-651X97)04911-§

PACS numbes): 05.30—d, 51.30+i, 05.70—a, 64.70.Fx

[. INTRODUCTION AND SUMMARY oughly worked out is to use an empirical interatom potential.
The Lenard-Jones 6-12 potentiabmetimes cut off at larger
The theory of crystalline solids is currently very well de- distancesis a popular choice. Rather full results have been
veloped, and relies on Bloch'’s theorem to provide the strucebtained here for the equation of stf#®—22. There is the
ture of the necessary gquantum-mechanical wave functionsnethod of Bunkeret al. [23], concerned with the metaliza-
This theory has been successfully investigated in great detdilon of hydrogen. It uses fluid variational theory, a modified
by numerous workers. The properties of fluids and amorhypernetted chain approach, and empirical species-species
phous solids, considered at the corresponding level of theipotentials. A description of a number of additional ap-
basic constituents, i.e., electrons and ions, has received vepyoaches may be found in the book by Krasffal.[24], plus
much less attention. It is the purpose of this paper to begin asome subsequent work which takes into account some of the
effort to construct such a fundamental investigation of themany-body effectsdynamical screening, self-energy, and
problem of the partially ionized gas. Needless to say there ipolarization forces[25,26.
no clear dividing line between partially ionized, and fully ~ An approach somewhat similar to the present approach is
ionized, nor, for that matter, nonionized. The resulting modethe confined-atom methd@7,29. It differs from our current
has been evaluated in the case of hydrogen, and the resufteethod, and my report of some preliminary results from a
have all the expected physical properties. The limiting presprecursor to the present meth29], by requiring for all
sure is correct for high temperature. The model shows thangular momentum states that the wave function vanish at
expected complete ionization phenomena for fixed temperghe cell boundaries. It is well known that for these boundary
ture in the dilute limit. As expected at medium to high den-conditions that the lowest eigenvalue is never less than that
sities, the model predicts a “cold curve” where the pressurefor the atom, whereas in the case of the present approach the
is very insensitive to the temperatur€The compression lowest eigenvalue may well be lowg30], in a manner simi-
pressure dominatgs. It also predicts a localization- lar to the so-called “metallic bond.” A first-principles type
delocalization phase transition, although critical parametersf approach is the quantum Monte Carlo method, which has
are not yet in accord with experimental results. been applied to a system of 32 electrons and 32 protons, with
Perhaps the theories in most general use today are ttibe observation of phase transitipsi].
Thomas-Fermi[1-6] and Thomas-Fermi-Dirac theories  Our alternate approach is to start from the ideal electron
[7,8]. These theories permit the computation of the equationgas plus a gas of ions, all of which are non-interacting. This
of state over wide regions of temperature and volume; howsystem corresponds to a state of complete ionization. It rep-
ever, they are basically semiclassical in nature. resents the correct description when the electric chargge
There are a number of other approaches which have beeset to zero. The deviations from complete ionization by
employed, many of which are quite good in certain regiongneans of many-body perturbation theory in the electric
of the phase diagram. There is the classical theory of ionicharge(or more accurately in terms @f) have been studied
fluids of Debye-Higkel [9]. A more modern version of it is for some time. The leading correction is the exchange cor-
the restricted primitive modélL0,11]. In this model there is rection[7], as all the direct terms cancel each other for the
a fifty-fifty mixture of hard spheres with chargelsq and case of charge neutrality. The next correction is the Debye-
—q, which move in a dielectric medium. This model is suit- Hiickel term, which is of ordee® and results from the sum
able for Monte Carlo simulations and for mean-field approxi-of an infinite series of terms of ordef [32]. The term of
mations. It produces results which compare informativelyorder e*, the second exchange correction, was added by
[12] with experimental data. The hard-sphere reference syBaker and Johnsdri9]. This approach is plainly completely
tem for the neutral components has also been (58d 4. correct within its region of validity. The requirement for its
The thermodynamic perturbation theory approach in its clasvalidity is the smallness of the Coulomb interaction relative
sical [15,16 and quantuni17,18 forms has been used. In to the thermal energy. This approach is quite good for large
addition there is the perturbation expansion in the electritemperatures and/or high densities.
charge[19]. A further approach which has been very thor- In this paper we apply a number of the insights gained by
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the study of crystalline solids to an effort to construct a In Sec. VI, | compute the results of the spherical cellular
theory of quantum fluid behavior. The cellular model is anmodel for the case of hydrogen. The results are as described
old idea[33] in that theory. For crystals, the cells can be above.

chosen so that space is completely filled, opposite sides have

values of the wave function related by the lattice periodicity.

| will apply the idea of a cellular model to the case of a fluid. Il. GENERAL FORMALISM FOR THE CELLULAR

For a fluid, there is no preferred direction, so that one is MODEL OF A GAS

forced to choose a spherical cell. Since one cannot fill space oyr work here will be based on the independent-electron
with spheres of uniform diameter, as one could with Wigner-approximation, modified as appropriate to included further
Seitz cells, this choice is necessarily an approximate ongmportant effects. That approximation is certainly generally
Various many-body effects are added to the spherical celalid for an ideal Fermi gas, and we also expect it to be very
model through the boundary conditions, an effective massyood for the application to extremely low-density atomic hy-
and changes to the potential. drogen. In the absence of other, more reliable, pictures, we

In the second section of this paper | give the derivation ofshal| be guided here by the way in which this approximation
the Schrdinger equation for our case. | also outline the nec-s structured for a crystal, while keeping in mind that what
essary thermodynamics and statistical mechanics to compujge are doing should work for an ideal Fermi gas. From a
the pressure, internal energy, etc. for our case. Some cafgndamental point of view, it is impossible to describe the
must be taken here as our case is a more general one thangghavior of the electrons correctly in terms of the solutions
often seen. of a one-electron Schdinger equation, no matter how clev-

In the third Section, | show how to construct a cellular er'y the potentia'i etc. is chosen. Neverthe|essy the
model of the ideal Fermi gas. Here cubic cells are USEd, anmdependent_e|ectron approximation has had very consider-
the model is in principle exact for this case. Some discussioRple success in the theory of crystalline solids. If we make
is given regarding the various integrals over the Brillouinthis approximation, then we expect to represent the crystal
zone which need to be evaluated. This model is evaluategy a periodic lattice of ions which leads in turn to a periodic
numerically. | show how to obtain the fugacity in this case.potential. The solutions for the single-electron wave func-
The results are found to be in agreement with the exact onegions in this case can, by Bloch’s theorem, be represented in
as expected. terms of the wave function in a single lattice cell, and a wave

In the fourth section | construct a spherical cellular modelyector in the first Brillouin zone. The difficulty in determin-
of the ideal Fermi gaS. | discuss the queStion of the SeleCtiO[hg the appropriate potentia| W|th|n the Ce” iS We” known_ In
of appropriate boundary conditions. In addition to the prob+he case of a fluid it may seem jarring, to those who are used
lem of spheres not filling space, there is an additional probtg thinking of a fluid as a many-body system in continuous
lem which arises. We resolve the wave function in the usuagpace, to discretize the system by dividing it up into cells.
spherical coordinates, and then we lledenote the angular However, following the Wigner-Seitz construction, if we
momentum index, and the radial wave function index. In  take a given configuration of ions and put a surface halfway
the Hamiltonian there is a terk V, wherek is a vector in  between each ion and its nearest neighbor ions, we will di-
the Brillioun zone. This term unfortunately couples compo-vide the system into cells of various sizes and shapes with
nents with all values ok to the components with adjacent one ion in the “center” of each cell. As the ions are much
values ofl. This problem greatly complicates the numerical heavier than the electrons, we expect the electrons to relax
work. | have used the observation of the degeneracy and nearto configurations in these cells on a time scale shorter than
degeneracy of the eigenvalues to give a prescription to rethat of the movement of the ions. In the independent-electron
duce this numerical problem to a more tractable level. As approximation, we generate the energy states of the system
result, the pressure as computed by this method is accurate by the use of the eigenfunctions of the single-electron inter-
within —2.5 to 4.9%. acting via an appropriate potential in each of these cells, just

In the fifth section, we come to the heart of the paperas was done in the crystal case. Rather than treat such an
Here | show how to construct a spherical cellular model ofensemble of different cell types, in this effort we replace
an ion-electron gas. | begin with a simplified discussion ofthem by a single cell whose volume is equal to the average
the cases of hydrogen. | start with the Heitler-London atomvolume. To the extent that volume fluctuations are important,
Drawing on our knowledge of the high-temperature limit, thethey are ignored here. This uniformization of cell size allows
electron-ion, electron-electron, and ion-ion interactions areus, as in the crystal case, to suppose reasonably that we can
adjusted to lead to correct results in that case. A modificationlescribe the system in terms of the eigenvalues of the solu-
of the various potentials is used to this end. Next the extion within a single cell and the wave vectors of the first
change correction is considered, and an effective-mass terByrillouin zone. The eigenspectrum of the individual cell, to-
is introduced as well as a further potential modification.gether with the spread in these energy levels due the the
Again our knowledge of the high-temperature limit is used towave vectors just mentioned, modeis the independent-
guide the construction of these modification. Finally, a cor-electron approximationthe energy eigenspectrum of the
rection of a semiclassical nature is made to take account afthole system. We will see in Sec. lll that this method is
the fact that the electron-electron and ion-ion repulsionsexactly correct for a cubic cell model of the ideal gas. Fur-
force the electrons apart, and so reduce the energies whi¢her, we know from tight-binding approximation theory that,
depend on these interactions. These resulting equations aatleast for the low-lying levels, it is very accurate in the cold
then generalized to general nuclear chafgegether withz ~ dilute limit of an interacting Coulomb system. That the
surrounding electrons. model behaves correctly in these two extremes is a neces-
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sary, but not a sufficient, condition for its overall validity. sarily real. Note also that since the Wigner-Seitz cell is in-
Our choice of what seems to be a reasonable intracellularersion invariant and Eg2.3) is invariant under inversion
potential is addressed in Sec. V. The issue of the screening aihd complex conjugation, it must be that df, (1) is an
the electric charges is handled in this model by the enforcedigenfunction, then so too ig} (—F). If the eigenvalue is
neutrality of each cell. If the electronic state is sphericallynondegenerate, then these two quantities must be a constant
symmetric, then the force outside the cell is zero. Otherwisemultiple of each other.
higher-order moment forces can occur. The cell-cell interac- Next we need the pressure of an atom enclosed in a cell.
tion forces are modeled here, as we will see later, by meang/e will suppose that the nucleus is fixed in the center of the
of the boundary conditions. As explained in Sec. V, thiscell. The most straightforward thing to compute is the grand
model, in some sense, replaces the long-range part of theanonical partition function which is normally given 8]
potential by a nearest-neighbor, cell-cell interaction.

The first step is to divide the system up into Wigner-Seitz
cells, with one atom per cell. We will not specify the under- Q(Q,T):NE_O exgNu(Q,T)/(KT)]JQn(Q,T)
lying lattice now, but will choose it later to fit our conve- -
nience. We will, however, insist that the Wigner-Seitz cells *
chosen be inversion invariant. Bloch’'s theorem on crystal = E E [(w(Q,T)—€)Nn;/(KT)]
lattices[6] says that any solution for the “one-electron wave N=0 {nmj}
function” is of the form () =e'* "¢ (F), where ¢(f) has
the p'eriodiqity c_)f the lattice. By using all thes which I_ie in — H {1+exd(w(Q,T)—e)/(kD]} (2.4
the first Brillouin zone, one can construct the entire band j
corresponding to that state. By the general theory the com-
bination of all the reciprocal-lattice vectors plus those in thefor the case of Fermi statistics. By taking the partial deriva-
first Brillouin zone covers the entire space. We will see tive of InQ with respect to the parametgy we can obtain in
later that our procedures will allow us to construct a correcthe usual manner
model of an ideal gas. Although this procedure is more com-
plex than the standard one, it can be generalized to the non- N=E 1 2.5
ideal case more readily. The point is not to construct a band T exd(e—u)/kT]+1’ '
theory of a gas, but rather to use this method to include the
Pauli exclusion principle effects between electrons on differyhere hereN=1, the average number of occupied states of
ent atoms. We add that to the extent that shape fluctuationge system, which fixeg, as a function of the temperature
are important, they are ignored in this procedure. Here thgng the volume. Since for the canonical partition function

an=N

boundary conditions are Qn(Q,T), as usual we hav&T InQy=—A(Q,T), where
R R = A(Q,T) is the Helmholtz free energy, we deduce directly for
YN =e " TY(Fr+R) (2.)  Eq.(2.4 in the usual way by considering only the term in the

sum corresponding til,
and

. . R AQ,T)=Nu(Q,T
A(F)- V()= —e " RA(F+R)- VY (F+R), or (4 D=Np(.T)

A(F)-Vo(N)=—Ar+R)-Vo(F+R), (2.2 T2 In{Lt exfl (u(0.T) = )/ (KD}

wheren(r) is the outward normal vector to the surface of the (2.6

cell, andR is a lattice vector. These conditions provide for
the continuity of the wave function and its derivative at the
surface of the cell. From our point of view, every calculation
we make must be reduced to a single cell, and the macro-

The energy is given from the Helmholtz free energy by
the thermodynamic relation

scopic effects are reflected solely through the boundary con- 3 —Tﬂ
ditions and the effective-mass and potential modifications. U—A—T% -3 ITlg 2.7
The next step is to substitue® "¢, (F) into the Schte aTly T exd(e—u)/kT]+1° .

dinger equation,
We remark that, normallyje; /dT|,=0, and so is not in-
cluded in the textbook presentations. However, in our case,
our treatment of the many-body effects induces a tempera-
. ture dependence in energy eigenvalues in the cellular equa-
=E\(K) ¢\ (7). (2.3 tions. It may at first sight seem surprising that, although we
start with a system in which the potentials in the Hamiltonian
Of course the issue of the best choice/gf) is an important  are independent of density and temperature, we could end up
one, and we shall return to this topic in Sec. V. We will, with this sort of dependence in the cellular equations. This
however, use an inversion invariant potential. Notice that th%ort of dependence occurs naturally when one goes beyond
left-hand side of Eq(2.3) is Hermitian, SoE, (k) is neces- the independent-electron approximation. As an example,

N L o
S (D)= KV (1) = 5= Vo (1) + V(F) hy(F)
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consider the exchange energy which arises due to the anti- €
symmetry of the electron wave function. In the textbook rb(?Tb:_ZEj- (211

derivation[35] of this electron-electron interaction term for
free electrons at zero temperature, the Fermi momentum €A/, substitution of this result into E.9 yields the well-
ters directly in the effective interaction term. Since the Fermi,on result
momentum is proportional to the cube root of the density, we
obtain a direct dependence on the density in the effective
interaction term. As the temperature increases, the distribu-
tion of the electron states no longer has a sharp cutoff at the

Fermi surface, but is smeared out there. This difference i .
the energy distribution of the electrons will likewise cause aq-he boundary conditions2.1) and (2.2) are known to be

dependence of the effective interaction on the temperature a8 fricient to produce a discrete set of states for each value of

well. k. Thus, in principle, what one needs to do is to compute
The pressure is also given from the Helmholtz free energyhese quantities for evelyin the first Brillouin zone, then to
by the thermodynamic relation integrate over the zone and sum over the discrete states, as
indicated in Eq(2.5) for variousw's, in order to determing

(2.12

u dey as a function ofry, and the temperaturé. From this deter-

. "0 mination, one can then substitute it into Ea._7)_, et seqto
__ % _ T T _ Nﬂ_ﬂ determine the various thermodynamic quantities as predicted
P 0 ;K exd (ex— um)/kT]+1 dQ) - by our cellular model. The computation of the necessary de-

rivatives is discussed in Appendix A.
&Gk

0
-3

= exd(e— m)/kT]+1°

. IIl. CUBIC CELLULAR MODEL
(2.8 FOR AN IDEAL FERMI GAS

The standard formulag34] for the ideal Fermi gagof
It will be useful to rewrite Eq(2.8) in terms of the “radius”  chargeless electropare

Iy, or typical linear dimension of the cell, as
N 2 \82 2 (= zyY%e Vdy
s Fﬁ(m =fed2)= = | Tizev
. 3.1

; exl (ex— ) /KT]+1" 2.9

pQ=~

Wl

where( is the deBroglie density which measures the impor-
) o ) ] _ tance of quantum effect$ is the number of electrons$) is
A remark at this point is worthwhile. It is common to see in the volume. andn is the electron mass arme exp(w/kT) in

text books the expressign()=kT InQ. This result is only  he notation of Eq(2.5). The pressure equation is
valid in the case where the Gibbs free ene@y Nu, as is

usually so and is certainly true for the ideal Fermi gas. In pQ  fg(2)
general, NKT fod2)
G=A QaA =Nu(Q,T) 2
- o0l e f5/2(2):_f y*?log(1+ze Y)dy
Ja Jo
KT log{1+exif (w(.T)~ €)/(KT)]} 4 (= zy¥%eVdy
C3n fo 1+ze V"’ 3.2
&Ek

rbarb T where the second form ofs(z) follows from the first

Wl

Ek (2.10

exd (exg— w)/KT]+1"

through an integration by parts, or vice versa. It is instructive
to re-express these equations in cellular form. Let us choose

) cubes of edga such thaa®=Q/N, so that on average there
The last two terms cancel each other for the ideal gas casgy one electron per cell. Then the reciprocal lattice is also

and correspond to the two forms &, given in Eq.(3.2  ¢ypjc, and the edge of a primitive cell isi2a. If we make
below. For reference, the entrof® can be obtained from change of variables=#%2k?(2mkT), then Eq.(3.1)
Egs. (2.6) and (2.7 and the thermodynamic relation -5 pe rewritten as
A=U-TS

Thus, in general, the computation of the pressure, etc., is K22\
reduced to computations within a single cell. When we ob- z ex;{ - m)dk

3 B
serve that for an ideal gas every eigenvalue is of the form 1= ia f f f . (3.9
h2K2/(2mr§), with « independent of ,, then, for the ideal (2m) 14y exy{ _ hk )
Fermi gas, 2mKT,
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By dividing the range of integration according to primitive cells of the reciprocal lattice, we obtain faBBj.

123 3 3

ji=—® jp=—» jg=—»

2m

2mkT| " a

3 wla dR
f”w,a W[ 2 7] 34
1+z lex k+t —J

where the steps in thesums are unity. The factor of 2 is a reflection of the two spin states of the electron. The corresponding
formula for the pressure is, by E(B.2),

L PR
p_4*2§°§ asﬂfﬁ/a 2mkT | <" 2 Y s
N T_3 1=—® '2=—oc j3=—w 277 —qgla 1+Z_1ex ﬁz > 2_'77-Q 2] ’
2mkT a

We are now in a position to compare these exact results for the ideal gas with the results of the cellular model described in
Sec. Il. First, ifk=0, then o(F)=exp(s-r) satisfies Eq(2.3), with E(0)=7%2s%/(2m), and if each component & is an

integral multiple of 27/a, wherea is again the cell edge, the solutions also satisfy the boundary conditions. Kvh@rthen
it is easy to verify thatp(r) =exp(s-r) still satisfies Eq(2.3) and the boundary conditions with the same restrictions.on

However, nowe(K) =7%2(5+k)?/(2m). When this is substituted into E€Q.7), Eq. (2.12) gives us exactly Eq3.5). Thus the
cubic cell model is exact for the ideal gas. It is not difficult to persuade oneself that the same is true for any Bravias lattice cell
model, as it just amounts to a reorganization of the intergals.

It is of interest to investigate what is involved in the numerical evaluation of the properties of the ideal Fermi gas by this
method, as later on we will be interested in the accuracy of the spherical approximation to the cell model, and in the calculation
of models with Coulomb forces added. As the integrals are symmetric in the 8-octants, we can reduce the integration to a
single octant. To do so, it is convenient to shift the Brillouin zone $ok<2/a; thus we do not divide any Brillouin zones
in the process. Hence E(B.4) becomes

= 161120 122013 OJJJO 1+eXFi7T(2§)2’3(K+J)2 pl(kT)]’

(3.6

and Eq.(3.5 becomes

+ oo

P 3277 o3 fff (R+])%di
3.
NKT %) 112012 0j3=0 0 1+exd m(20)2(k+])2— ul(kT)] S

The problem here is to do the integrals owerand then do the sums ovgr Because of the exponential these sums cut off
quite rapidly once the eigenvalues exceed the free energif/e have used the Euler-Maclaurin sum formula, because it is
quite efficient for Gaussian-type integrals. Specifically, with remainder, it is

m—1 n—-1
B
j f(x)dx——[f(o yHEm+ 3 A= 3 S N m) = 120 (0)] - (6, m>(2 Ik (38
whereB,, are the Bernoulli numbers,
82:%1 B4:_31_01 86:%21 B8:_31_01 810:%1"' . (39)

We have found that dividing the range of each rectangular componeitinf\7(2¢)¥3+1 intervals with no Bernoulli
number corrections was sufficient to give a maximum deviation of 0.2% for the pressure from the representation of Baker and
Johnsor{ 36,

pQ 1+0.610 948 89+ 0.126 604 36>+ 0.009 117 764 43]*°

NkT - 9O~ 1+0.080 618 739 ’ (310
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which is accurate to 0.1%. A binary search method was used These boundary conditions would be rather hard to use in
to solve EQ.(3.6) for u. The starting value ofc used was the spherical coordinate framework if we did not already
computed from the representation given by Baker andknow the result, as they mix a potentially large number of
Johnson. The left-hand side wgE9] reproduced to at least different| states and greatly increase the solution effort. For
on part in 18° We checked over a range of the ideal gas cases, of course, there is no problem, as we
7x10 4<{<7x10°. Note is taken that the Bernoulli num- have the solution already, but a problem would arise if we
ber corrections all vanish at the boundary where a compowere to try to add a spherically symmetric potential. In ad-
nent of J is zero, as this is an even function i) and the dition, this sort of boundary condition violates the spirit of
others cancel in pairs, except at the large cutoff where the spherical cellular model, as it has preferred directions.
they are negligible anyway. Thus this particular case is not dhe spherical cellular model is necessarily an approximation,
good guide in general to the expected number of Bernoullas one cannot fill space with spheres of constant diameter,

number corrections for this accuracy. and the whole Bravias lattice structure which works so neatly
for actual space lattices is inapplicable for spherical cells.
IV. SPHERICAL CELLULAR MODEL Alternatively we can start with Eq2.3) and impose the
FOR AN IDEAL FERMI GAS boundary condition$2.1) and(2.2) for periodicity in all di-

rect|ons at every pomt on the surface of the sphencal cell of

consider the body-centered-cubic or face- centered cubic lat-

tice. These lattices are reciprocals of each other, as is very

well known. Their primitive cells are more nearly spherical A-Vever=0,  Podi=0 (4.9
than for the simple cubic lattice. For the ideal Fermi gas

problem we can again choose the single-electron eigenfunc-

t|on to be of the form expﬁ |7’) Wherep ||es on the rec|p_ on the Surface Of the Sphel’lcal Ce” The fII’St Brl”ou|n Zone |S
rocal lattice, and couple the sum over the reciprocal latticdaken to bék|<kB (97/2)Y3Iry,. In the cas&k=0, we can
with an intergal over the first Brillouin zone. The same struc-construct a basis set of solutions of E8.3) in the spherical
ture as explained above for the simple cubic lattice continuesell with these boundary conditions. They imply, in short,
to work here, and reproduces the ideal Fermi gas results ithat the radial derivative of the part which is even under
the same way. If for example we talie=nb, wherel; is  inversion must vanish at the surface, and the value of the odd
one of the basic reciprocal-lattice vectors, then we can writgpart must vanish on the surface of the cell. Specifically, the
the eigenfunction in terms of the spherical basis system asbasis set is

gifr Z (214 1)i'Py(cosh,p) iy (Tp), (4.2) LMY =Y im(68,)NpJ (PRr), m=—1,—1+1,...],
whereP|(x) are the Legendre polynomials, ajj@x) are the 1=0.1 A=12,.., (4.5
spherical Bessel functions. If we choose the length tof be
m/|B;1| then we can, if we wish, select equivalent boundary
conditions for a sphere of that radius to be whereY)| (6, ¢) are the usual normalized spherical harmon-
ics, and are, in terms of the associated Legendre polynomi-

ginm cosry 2 (214 1)i'Py(costyp)ji(nm) (4.2 als, P"(cos?),

12
on its surface, and we will have defined this eigenfunctionin ( _ 2+ 1) |mp! ) ! P\m\(cose)eim
the sphere. This in turn can be decomposed into its even and "™ 47r(1+|m))! ! '
odd parts under inversion. On the surface of this sphere they (4.6

are

be=COINT COHy,), o=1 Sin(nm coshy,). (4.9 The quantitiesp, , are determined by the boundary condi-
tions through the requirements,

In order to insure periodicity in the direction,, we note
¢,=0 automatically here, and by differentiation we find the
bl'VqSe—O here as well. In the tangent plane perpendicular
to b;, we have, by the usual theory of lattices, two of the
basic vectors for the lattice. In this whole plane, the same
two boundary conditiong,=0 andb; - ¢o=0 hold, as men- Finally, N, , are given by
tioned above for the poles of the sphere. This set of boundary
conditions reflects the usual three-dimensional periodicity of }
a space lattice. In other directions we see the oscillating _n2 | P2 24p— 1,372
boundary conditions described by E¢%.2) and(4.3) above, 1=N j JPAnTEdr=2ralJi(prary)
which of course reflect the existence of special directions for _ ] )
the space lattice. —Ji—1(Piar) Ji+ (P INT (4.8

hi(Prary)=0, | odd,
il (P ATp)=0, | even.

(4.7
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where we take j_j(X)=—no(x)=cosdx. This set of preferred direction, we have, for convenience, taken be

basisfunctions is a complete orthonormal set. It is not theyarallel to thez axis. It is to be noticed that the various

only possible such set, but it is appropriate to our presendtates are not mixed by this operator because it commutes

needs. with the z component of the angular momentum. This reso-
The next step is to resolve the operatdd’ |ution requires some straightforward, but tedious computa-

= —(iA2/m)k- V in this basis. Since the spherical cell has notion:

el _ —ih%k[21+1 (1= |m[)!1]H im¢|—m+1pm » |
l,m,\)= m 47 (I+]m])! 21+1 1+1(X) P|,>\J|(p|,>\r)_FJ|(p|,>\r)
I+m ., I+1
+mP|_1(X) pL)\Jl(pl,)\r)"'TJI(pl,)\r) Njx- (4.9
Thus the results ard’,m’,\’|H’|l,m,\)=0, unlesgl’ —1|=1. The nonzero elements are

d=1,m N [H'|I,m,\)

—ih%kp ) [12—m?| 12 2P\ - 1(PiaTp) Ji—a(Pr—iae) |12
41°—1 m’,m 2 _ 2 - —% for | odd
m Mo(Pyx p|71,)\f)|JI71(pI,}\rb)| J—1(Pr=1x/Tp)
—iﬁzkp.,x(lz—mz)“is [ 2p1_1x/J1-1(PiaTD) } o (4.10
' - — or | even
m 417-1 e rb(p|2,>\_p|271,w)[ﬂ|(P|,xrb)J| (P|,>\rb)]1/2
and
d+1,m N [H|I,m\)
—ihkp (I+1)2—m2)1’2 2P 0ii+1(PiaTb) ( Ji+2(Pr+1p7) )1/2 for | odd
m 4(1+1)°-1 mem rb(p|2,>\_p|2+1,>\r)|j|+1(p|,xrb)| —141(Pr+1r/Tb)
—i%2%Kkp; <I+1)2—m2)“2 { —2p1 1adi+1(PiaTD) } o 1 even (4.19
m o LA0ED =1) T iy (pf = Py )L T (PAT) T (PrAT )] '

As the operatoH ' is Hermitian, but does not appear soin  In the case wherp, .1, =p,, the[ ] terms in Eqs(4.10
this mode of expression, we remark that its Hermiticity canand (4.11) considerable simplify. They are
be explicitly verified by use of the Bessel function identities,

(] (1 L(L+1)\" 414
) ., — T\ +T i 2 ) .
Pradi+1(Pr1n o) ii+2(Pialp) PiaTb
=Prsiadi+1(PiATe)i1(Pra1arfy), | odd, where forl even,L=I, and, forl odd, L=1-1 for Eqg.
’ ’ ’ (412 (4.10 andL=1+1 for Eq.(4.11), respectively.
: - One might think that the occurrence of degeneracy, other
, r T
P B (PLATO) T (i To) than between the states with differentomponents of an-
=pPiadi+1(Piarp)ii(Pr+1a:ry) | even, gular momentum, which do not mix in this case, would be

accidental and rare. However, degeneracy and near degen-
where use has been made of the standard Bessel functi@macy are quite common in this basis. First, since
identities and also, in particular, the boundary conditionsj/(z)=—j.(z), them=0 component of thé=1 member of
(4.7). It is to be noticed thaj;'(p; \rp) only appears in Egs. our basis states is always exactly degenerate with the corre-
(4.10 and (4.1]) for evenl. In this case, ag/ (p; \rp) =0, spondingl =0 state. In general, for the higher-order zeros,
thej” terms can be replaced, using the spherical Bessel funeve have the asymptotic expansiof/]. The sth zero of

tion equation il (2)is
141 Lo _(2|+1)2+7 - B ( 1 _})
ji’(p.,xrb>=—(1— D jpary, @13 =B g +O(B™), B=m|st5l-7|,
pl,)\rb (4‘13

which eases the problem of the evaluation of the expressionand thesth zero ofj,(z) is
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TABLE I. The values ofp,, in units of . o=\+[(1+1)/2],  These results, together with the completeness of the
where[a] is the greatest integer not exceeding ¢i+1,(r) over all\ for O<r=r,, allow us to deduce, by
direct computation, the conclusion

No 0 1 2 3 4
0 0.0000  1.4303  2.4590  3.4709  4.4775 - 2 ol A o

1 1.4303  2.4590  3.4709  4.4775 (I,m,)\|(H’)2|I,m,)\>=4(h K )(2' +2l-1-2m T
2 1.0638  2.3205  3.3785  4.4074 2m /| (21-1)(21+3)

3 22243 33159  4.3602 1(141)— 3m?

4 1.7974 3.1323 4.2321 +ma’)\ s (418)

(21+1)°—-1

Zs(l):ﬁ_T‘Fo(ﬁi%, B=m

1

- where

s+ 5 I )
(4.16

2 2

h h
T =~ 5 Ilml)\- Vzllm!)\ [ =— r 2,
By way of comparison we consider the results from Eq. ' Zm' v ) S el Aol
(4.15 for |=2u+1, and from Eqs(4.16) for | =2u. In this (4.19
caseB=m(s+ u) for both cases so to leading order they are

degenerate. Taking the difference, we obtain N o
and use was made of our boundary conditions, which imply

i1 that ¢ \(rp) @/ ,\(r,)=0 for all values ofl. Note that

~ Iu’ — =

zs(z,u)—zs(z,u+1)=2( )JFO(IB 3. (417 S =0 forl odd. The sum of 'ghe absolute squares over the
B 2l +1 states of them is, by direct computation from Eg.

(4.18,

So for larges we obtain very near degeneracy. For smaller

values ofs, except for the =0 and 1 correspondence, the | 22

degeneracy is not too bad but not so close. We report some E (,mA[(H)1,m )\>:4(ﬁ K )(ZI +1
m= ’ ’ ’ ’

of the values in Table [38]. 3 LA

2m
If there is a near degeneracy so that for soffieand\’, (4.20

P ar=~Pi=1,s then, without the compensating vanishing or

near vanishing opfx,,— p|2¢1>« the vanishing, or near van- ]

ishing of the numerators in Eqé4.10 or (4.11) causes the Where the sum ovem of the S, term vanishes here. The

corresponding matrix element BF to vanish or nearly van- (214+1)/3 factor has .the interpretation that it is _the _totaI

ish. With this observation as guidance, we will now divide Number of states, divided by the number of spatial dimen-

the Hamiltonian matrix into blocks characterized by a valuesions, as only one direction is singled outhyThe result in

of m, the z component of the angular momentum, and allEq. (4.20 corresponds to averaging over all the directions of

those states which are degenerate in leading order as ek-as the sum over thm states is independent of the original

pressed in Eqs4.14 and (4.15. The largest block will be  jrection chosen fok, and so is in line with the concept of
for them=0, case and the lowest-energy state of the larges},e spherical cell.

value of| retained. _ The next step is to sum over thealues of the degenerate
It is to be noted that the matrix elementstbf depend on nearly degenerate block. For théh excited state of=0

m. This dependence adds greatly to the length and complexpis sum would be up t&, which is the lesser of the maxi-

ity of the computation. For numerical expediency, within j,um | value considered ore Thus the root-mean-square

each block of degenerate, or nearly degenerate states, W&lue A (k) for this block would be given, in units of the
replace the resulting eigenvalues with the eigenvalue plus G ijiouin energy, by

minus the root-mean-square deviation over its block of the
eigenvalues due tél’. These latter values are easily com-
puted by taking the trace oHy+H')? for that block. The £2K2
exception is for the lowedt=0 state, which is not degener- [—B
ate nor nearly degenerate with any other state, and so no
change is made here on accountidf This treatment agrees L-1
with that of Bardeerj39] for the ground-state case. X 2 —_—
The necessary partial traces to be taken are those of =0 3
(H')2. One convenient way to obtain them is to start from (4.2
result(4.9), and use the completeness formula

el

2
2m Aw(k)} T(C+122m

21+1

Tho-10+1)2) -

A HDALMAY =0 o AL mAH 1, m A7) In a _manner_similar to_Eqs.(B.G) and (3.7), we obtain
e expressions which determine the parameteand the pres-
X{7,m" N [H[I,m,\). sure. The parameter is given by the solution of
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1
1+ expl (L.5VT0) (8 0+ 1+ kA q1+1)29) — wIKT]
. 1
1+ exf (1.5V70) %36y o+ k%= kA s+ 1y2) — wIKT] )

where we use the notatias ,= pﬁn/kz, and where 3-2x3X 3 and the 2 is for the two electron states, the 3 normalizes the
integral, and thé compensates for the twa A terms. For the pressure, remembering the factdy gi’en by Eq.(2.12, we
obtain

1=3> (21+1)> fldfc KZ[
=0 n=0 JO

(4.22

e ot K+ kAp i a+1)2(Ks)
1+exf (L.5V7 )26y o+ K2+ kA i1+ 1)72) — 1IKT]

pQ , ” ool
N—I(T—z(l.sﬁg)”;) (2|+1)n20 fodmz[

e ot Kk?— kA k
N I'n 2//; K n-;[(l+1)/2]( B) ] .23
1+exf (1.5Vm) %€y ot k%= kbp 1+ 1)) — w/KT]
This form is analogous to the second form fgp, in Eq. (3.2).
A form analogous to the first form fdis, in Eq. (3.2) is
Q ee] oo 1
p—=32 (21+1)>, f dir k2(In{1+exd w/kT—(1.5J70)%3(e o+ K2+ kA )]}
NKT "1=o n=0 Jo ' :
+In{1+exd w/kT— (157 ) (e ot k2= kA )T, (4.24

It is to be noted that the structure of E¢.24) is such that the pressure is necessarily positive. We can obtain an expression
which makes the integrals and the numerical approximations used to evaluate them parallel thos¢do2Eand(4.23), if
we integrate Eq(4.24 by parts with respect ta. The result is

o0

Q0 -
Np—sz 20 (21+ 1)2O (n{1+exd w/kT—(1.5VT) %€ n+ 1+ Api (4 1y2) 1+ IN{1+exp w/kT—(1.5(70) %% o +1

2%+ kA p i1+ 1)2)(Ks)
1+exp (1.5Vm)?3(e) o+ 62+ kA g1+ 1)72) — /KT

* * 1
—AnJr[(lJrl)/z])]}H'(1-5\/;5)2/3|:20 (21 +1)nzo fo dx KZ{

n 2K2_KAn+[(I+l)/2](kB)
1+ex (1.5Vm8) (e o+ k2= kA (14 1)) — w/KT]

) (4.25

In order to compute the thermodynamics of the ideal gadllustrate these results in Fig. 1. Our results fare accurate
for a spherical cellular model, we first compute the eigenvalfrom —10% to 4%. However, the equations fprare not
ues and eigenvectors of the above-mentioned blocks. Thed€ry sensitive to the value af That is to say, the change in
block matrices are tridiagonal, and so the numerical computhe left-hand side of Eq4.22 is proportionately much less
tations are straightforward and quick. The eigenvalue spedhan the change ia. It is to be noted that for Eq4.29 in
trum allows us to compute by E¢4.22 the value of the Fig. 1 the smallest three plus decadeigh temperatur)gand
parametery, and then in turn by Eqs4.23 or (4.25 the approximately the first two decadélow temperaturgin ¢

I fth R ber that as di 4ins e accurate to fractions of a percent, and tend rapidly to
value of the pressure. kemember that as diSCUSSed In S€C. Ly yact values in each limiting case. For fofth23 it is to

we need to pick out a discrete setkit and appropriately be noted that in Fig. 1 the smallest two decatiégh tem-
sum over them to simulate the integral over the first Brillouinperatur¢ and approximately the first decadiew tempera-
zone. We have evaluated these equations numerically, artdre) in £ are accurate to fractions of a percent, and also tend
solve for u as described in Sec. Il for the cubic cellular rapidly to the correct values in each limiting case. We have
model. We find that the results of our spherical approximastudied the same range ohere as we did in the case of the
tion for the pressure using E.25 is accurate to within cubic cellular model in Sec. Ill.

—2.2 10 1.2 %, and, using E@4.23), is accurate to within The technical details of the calculations are as follows.
about—2.5 to 4.9 %. Forn{4.25 is somewhat more accu- We divide the range of up into the larger of 16 or
rate in the ideal gas case; however, fq@h23 must be used  2X+T aximum WhereT naximumiS in €V, andx looks ahead to

in later sections as Eq4.25 does not hold in general. We Sec. V and is defined as
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125 T T I T T T V. SPHERICAL CELLULAR MODEL
FOR AN ION-ELECTRON GAS

The addition of Coulomb forces to the spherical model of
an ideal Fermi gas is not straightforward, if we wish to be
able to compute numerical results from our model. We will
in the main use the independent-electron model with some
modifications where required. Initially we will begin with a
discussion of hydrogerZ(=1), which is conceptually some-
what simpler. In the highly dilute, cold limit, following
Wigner and SeitZ33], we start with the Heitler-London
050 |- | atomic approximation, together with the boundary conditions
as discussed in Sec. Il, and so we start with the equation

1.00

075 —

p/P

N | e -
025 - 1 SO K V(M) = 5= VEh(F) — = ¢a(F)

=E,\(K) ¢, (F). (5.2)
000 UL ] ] ! ! 1 !

10 10 10z 107 1 101 102 As is well known, the boundary conditiop’ (r,) =0 for the
¢ ground statgeven parity leads to a lower energy than that
for the atomic ground statg30]. This boundary condition
FIG. 1. The pressure of the spherical cellular model of an idea}'pushes'- the electrons which would have been outside the
gas divided by the pressure of the ideal Fermi gag, wse deBro-  ce|| into the cell, and has the effect of concentrating them in
glie density. The solid line is for Eq4.25, and the dashed line is the outer part of the cellrelative to the atomic wave func-
for Eq.(4.23). The dotted line is for a ratio of unity, and is put in for tion). This can be viewed as clustering electrons between the
reference. two adjacent ions, and thus lowering the energy and forming
a bond between them. This effect, in some sense, represents
128 "*mér,, 42 the polarization attraction of two atoms, but is, of course,
972 XA (4.2 sphericalized in our model.
In our subsequent discussions it will be useful to intro-
wheree is the charge on the electron. The number of partiaduce the relative strength of the Coulomb energy to the ther-
waves taken is governed by mal energy by

X:

2

L= 1(\1+3.54—1)+10, (4.27) y?= ekT- (5.2
)

which also looks ahead to Sec. V and keeps the minimum

value of the potential plus the angular momentum barrier for! € ideal Fermi gas of Sec. IV is characterizedyby0, and

the maximum value of outside the considered sphere. The!he cold isolated atom picture of the previous paragraph by

10 is added for safety. In addition, we require that largey. The properties of the ideal gas dependoalone,
Eq. (3.1). A considerable amount is known about the small-

L= (x+ X2T aimunk 0.864 66 y be_hr_;\vior from many-body perturbatio_n th_eory. In particu-
lar, it is known that the sunp40] of the ion-ion repulsion,
+max 0,IN(X°T maximum /17.34791) Y2, (4.29 electron-electron repulsion, and ion-electron direct terms
cancel in first order ir? for electrically neutral systems. The

which enforces the condition that the minimum acceptableonly term which contributes to this order is the so-called
value of the potential plus the angular momentum barrier aéxchange term. Let us now examine the properties of the
the surface of the sphere should be+1bIn(L+1). The cellular model in this regime. The ion-ion repulsion term is
L-dependent part is to take account of the fact that there aneot in evidence because there is only one ion in the cell, and
about L+1)? degenerate, or nearly degenerate states corthe ion-ion term for ions outside the cell is cancelled by the
tributing at that energy level. This restriction leads to a re-ion-electron attraction terms with the electrons outside the
duction in the relative term size of the order of®10n the  cell. We do have the ion-electron attraction term within the
case reported in Fig. 1,=213, and the number of intervals cell. As in this regime the electron density is uniform in the
in r is 353. The method of integration overdiscussed in cell, we can easily compute this energy as
Sec. lll is used here with two Euler-Maclaurin corrections. 5 5
We selected 16(1.57£)3+ 10 intervals for thex integra- E o _ 3 J ar - 3e” 5.3
tion, which refines the rule in Sec. Ill by an order of magni- et 4l f<ry [ 2rp '
tude because the Euler-Maclaurin corrections do not cancel
out as they did for the cubic model. We have checked thaThis derivation would normally be supposed to be valid only
these rules are adequate for our purposes by running tefir high temperaturésmall ¢), but for our boundary condi-
cases where the numbers were at least double, and found thains the ground-state wave function for the ideal gas is just
the resultant changes were not at a significant level. a constant. This circumstance leads to a uniform electron
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125 T T

T | T T attraction so exact cancellation occurs. However, since we
are not going to adjust the-e?/r term in the Hamiltonian
because of its correctness for large we will instead add
E;=3e%/(10r,) to E;_, to compensate for the ion distribution
effect. The addition of constant amounts to all the energy
levels, by Eg.(2.5, adds the same constant jo. The
changes in the potential in E¢5.1) necessary to take ac-
count of all the direct terms of the first order y& are the
addition of the two terms

1.00

2
050 -

Ei=—, and V(r)=(

B 3¢e? ezrz) (Gez)
10ry,’ .

= — == +
2rb ng ce

025 a _2782 e2r2 .
S 10, 2ry ©.9

000 -l L L L L L L Because this potential is caused by interaction with the other
104 10-3 1072 101 t 10! 102

¢ electrons and between the ion-ion pairs, as usual, we use
e,=E,— 3(V) for the energies of Sec. Il. When the po-
FIG. 2. The average value of ion-electron attractive energy asential of Eq.(5.5) is averaged over the spherical cell, it gives
computed in the ensemble determined by the spherical cellulat2e?/(5r,). The net contribution is just one-half of that, so
model of the ideal Fermi gas. we find that this term exactly cancels_.+E; to leading
2
_ _ order iny~. _
density for very low temperatur@arge {). In Fig. 2 we plot Note is taken that the total potentisl(r)—e?/r seren-
this energy divided by the result in E(5.3). We have cal- ginitiously has zero radial derivative at the surface of the
culated this quantity using the spherical cellular model of theg| we ‘will see below, however, that this feature is only
ideal gas as described in Sec. IV. It is to be observed that thg,iq 1o leading order iny2.
quant_ity is substantially_ independent prhere is about a The “exchange term” comes from the interchange of
6% dip nearf=1, but this may reflect an inadequacy of our gjectrons between two different states as a result of their

spherical cellular model. o mutual interaction via the electron-electron force. The ion-
In addition there are the electron-electron and ion-ion rejg, exchange term will be neglected here. The first-order

pulsion energies. These arise be_cause we are rea[ly tr?ati’ﬂﬂeraction energy for all values gfwas given by Baker and
an system ofN electrons andN ions, each of which is  j5hnsor{19] as

present in a particular cell with probabilityN/ This energy

can be computed directly as is done in the “Hartree term” L.
[35]. As usual, even though there is no self-interaction, the 41re? 47rr§ dk;dk, R R
weighted square of the wave function need not be subtracted, Eexen= — f - n(kyn(kz),

2m®\ 3 K —
as it only contributes of the order ofN./to the results. Thus (2m) (ki =ko) 5.6
we obtain '
wheren(p) is the Fermi distribution function,

3 \2 e?

Ee_e=<—g) J dflj dfzﬁ 1
4ar Tl< l< ri—r 3) =
Ty [ryl<rp [rol<rp | 1 2| n(p) exp[[(ﬁ2p2/2m)—,u]/kT}+ 1 (57)

:3_92 3 f dr 1_3 M ? :6_32 (5.4) This equation reduces to the textbook result for the ex-
2rp\ 4arry lfl=<rp ! 3\ry 5rp’ ' change energy when the limit—0 is taken, whera(p) =1
for |p|<kg, and zero otherwise. Baker and John$86]

3 |2 o2 62 further give a representation which is good to about 0.1%.
= dff diy——>7==—. Itis
! (47TI’§> fﬁlsrb ! [fo|<ry, 2|r1—r2| Sy
e2 3 1/3
_ — 4/3
It is to be noted thaE; o+ 0.5(E..+ E;.;) does not cancel. Bexer=— 27l (;) £, ©8

The physical reason for this is that in this regime the ions are
also uniformly distributed, thereby reducing the ion-electronwhere

T, 1+0.088 412 769 s
X({)~ 5¢

1+0.795 519 53+ 0.193 500 342+ 0.013 716 39¢° (5.9
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Clearly, this exchange term is not independeng.dfvhen¢ R 8 e dk
is large, then the textbook value of the exchange energy,asa  V(0)=— 273 J 22 n(ky)
function of wave numbep, is just given[35] by (2m) k2

2 13 o o124
il 22 (1 KK ket __z2 —1/3(3) 1 w’
V(ky)=——Kkg §+ AkKg n ke—Ky| o 7 JmJo 1l+ze
2 1/3
2¢? 1 (k)2 _ 28 s 3) f
_o2e k) e 2), 5.1
L 3<k3> . 510 ] o) (5.15

in line with the notation of Eq(3.1). Baker and Johnsdr36]
provided a representation 6f,,(z) as a function of which
is uniformly accurate to within 0.1%. It is

which increases from a minimum ki{=0 in a manner pro-
portional tok"i. We can also compute the results for sniall
Here, by taking a factor of 2 times the functional derivative

of (5.6) with respect tosn(k;), we obtain S(0)\ 18
fl/Z(Z) 2 g( u (g)) ’ (516
)= —— N(Kz
(2m)3 (K,—K,)? where
8re? a4k 22 v3(£)=140.175 492 05+1.183 343 K 10 2{?
- 2 2
~ (2m)° 4 Kk )zexp( - 2ka)' +3.092 359 K10 4¢3, (5.17
17— R
(5.11) and
L. — 2
Substitutingk,=k;+k; and integrating over the angles of Us({)=1+1.236 152 2+0.543 270 33
ks, we obtain +9.798 599 & 10 273+ 6.191 263 X 107374
A 2627 | 2mk 72K +1.619 155 K 10 4¢°. (5.18
G- S (5o - o
Ky 2mkT To determine the value of the coefficient kdf and thus the

value of Eq be reproduced. The multiplication of Eqg.

52 72k K effective mass as a function ¢f we require that the proper
<), dksexp( 2m kT) *( 1 3)/ ’

mkT (5.19 by n(IZl) and the integration ovelEl leads, by two

2e2§ omk times Eq.(5.8), Egs.(5.14), and(5.15), to the equation

- \/; ( ﬁZT) e? (3|13 s 262 s 3\ 13
——— o] X = =] fud2)
F{ 2k2> (13 ﬁ2§> Tl \ 7T My ™
xexpg — ——=| 1F1| z: 5 5—=], (5.12 -

2mkT] 112" 2" 2mkT, + 3KTL YA fsl2),

(5.19

where |F(3; 2,z) is a confluent hypergeometric function.

For Iargekl, V(kl) goes asymptotically to zero I|kE1 , which determinesA({) to be
and for smallk? it is

. . 262 3 1/3
V(kl):—r—b(;) ek

2 f1(2) = X(O)(7L)
f5A2)

The functionfs, is just£g(¢) of Eq.(3.10. The behavior of
The usual procedure for the exchange energy is to replac®({), when{—0, is
its effects by an effective mass. This idea corresponds well s
with the smallk behavior and the general shape of the ex- A(g)w(i) 2Py .
change energy vs the wave number, at least where there is '
significant statistical weight attached to the state. To imple-
ment this idea we will represent the exchange potential by whose value is} of that obtained by cross comparison of
Egs. (5.13 and (5.14). The difference is due to taking ac-
Zkf count in Eq.(5.2)) in an average sort of way the effects of
(5.1 higher orders irki. The asymptotic behavior, wheh-, is

i
L gmer T

_2 2/3( )1/3
A(D)=30 ~ [ ] (520

(5.13

(5.29

D(ky)= V(0)+y2A(§)

First we may observe that the value of the exchange energy A()= E (272)~ 13 (5.22
for k;=0 is given from Eq(5.11) by - '
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The summary of our investigation of the exchange energy islamping factor, and | will use it in this papgifhe damping

that we will replace its effectéto leading order iry) by an  factor has the physical interpretation of representing a hole in

effective mass given by the electron-electron density distribution reflecting their mu-
tual repulsion.

(5.23 In addition we need to consider the modification Ep

' wheny=0. To this end we note that the difference in the

potential energy experienced by the electrons between the

and includeV(0). | have checked numerically the behavior case where the ions are uniformly distributed, and the case

of A({) as defined by Eq5.20 over the same range ¢fas  where the ions are fixed at the center of their spheres, is

shown in Fig. 1, and this definition is negative nowhere ingiven by

that range. Thus the effective mags.23 always obeys

m=m*>0. Further modifications to the model could be

m—1 A(0)y?
e +A()y",

made to insure that the Debye-ekel and second exchange e? 3 e?dR
correctiong 19] are reproduced in the smallfimit. Pi(r/rp)=—-— Amrd j -

The next issue is how these energies vary ascreases. ' LA o [R=T]
The important physical effect is that when the electron- 2l 3 1 2
electron Coulomb energy is not negligible with respect to the R N (_ ] (5.28
thermal energy, then the electron-electron repulsion forces rylr 2 2

the electrons apart, and thereby reduces the energies that

nd on this interaction. There are vari Wi f takin . . . . .
depend on this interactio ere are various ways of ta %/hen this potential difference is averaged over a uniform
i

istribution of electrons in the sphere, we obtain,

3e?/(10r,,), as before. Again, to compute the effects as
increases from zero, we will apply the corresponding
ibbs weight. Thus

this effect into account. One can use the classical turnin
point, and just take zero density where a state is classicall
disallowed. What comes to much the same result, but is sim-"
pler to apply, is to reduce the electron-electron density by
Gibbs weight factor, exp-€%/(rkT)] wherer is the distance
between the two electrons. This method is certainly valid in

the classical limit wherg— 0. It is important that whatever 3
is done cause these energies to vanish in the cold, dilute limit Sy f dpPi(p)exd —y?Pi(p)]
mentioned above. p=t
To illuminate this behavior, we next compute the 3e? 1 3 1
electron-electron repulsive energy in the presence of the 1o [10J dp(——§+§ 2)
Gibbs weight factor. It is b p=1
e?| 3e? ,[(=dé _ xexg —y? E_§ 1
Eoe= ( )f dr ex;{ ) —y4f —e§,
47rrb rkT ly y2 &
(5.249 3e

_ ) 10,907 (5.29
where the change of variablés=e/(rkT) was made. For

smally, by expanding the exponential, we obtain

32 For small and large, we find
ge-e:?(l_Zyz"'"'): (5.29
b
1/2
_ 2 _q_ 412 2 [ 27| 5
We can rearrange E@5.24) to give 9(y?)=1-zy"+--- andg(y)=x| 3 23
3e? , » e "dp (5.30
T
Ty, y o (1+y “n) ) o
, which suggests the approximation
3e
=—y’2 Y(1-3y 2+, (526
¢ ( 3¢e? 1 (5.31
for the largey behavior. This behavior at both the large- and b 110, N 41 2, 2(3 ve '
smally limits can be compactly represented by 14y 5\27 y
e’ a2 27 2y?
5e-e=2—rb|:(y ), F(y9)=~e 25 ay2r v Again, approximatior(5.31) is not necessary becaugéy?)

(5.27) is easily computed numerically, but serves to make manifest
the behavior ofy, and | will use it in this paper.
whereF (y?) is a damping factor foE, .. We will apply it In order to take account of the many-body quantum ef-
t0 Egyen@s Well.[The approximation foF (y?) in Eq.(5.27  fects of the electron-electron repulsion and the attractive ex-
is not necessary, as it can easily be evaluated numericallghange interaction, | propose a modified version of (&dl),
however, it helps to summarize the general behavior of thevhich is temperature and density dependent. It is
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the antisymmetry of the wave function. Of coursg,is
meant to embody the spin states of the electrons as well.
When the eigenspectrum is substituted into to the formal-
ism of Sec. Il, it is to be remembered that what is counted in
Eqg. (2.5 is the average number of occupied states, not the
number of electrons, 98 remains unity. For example, in the

/
2_7_ i_ - 13 E v " case of the ideal ga@oninteracting electronswe consider
X 72 f1A(2) | () . . . .
10 2rg T enlarging the cell so that it contair’s electrons. If we still
. . consider single-electron states, then for lafdpicks out the
=Ex(K) (), (5.32  ground statewe need\ = Z to allow us to occupy the lowest
] ) Z levels which we need to do in order to satisfy the exclusion
where now we define the effective mass by principal. On the other hand, if we consider antisymmetric
states of the whole system &f electrons, then the lowest-
m 2E(y2 energy state already involves the firssingle-particle states
W=1+A(§)y F(y9). (5.33 qy y gle-p ;

and so we obtain the same physical ground state selected by
choosingN=1 in this case. Consequently, here we select

In order to define the energy per state to go into the formalbells that contairfon the averageone ion and its attendat

ism of Sec. Il, we first solve Eq5.32 by the methods of electrons, and chooseé=1.

Se<_:. IV forE, (k). Then we must deduct_ hal_f of _the Con_tri- Following the procedures above, we now need to “cor-
butions from the electron-electron and ion-ion interactions,qq» Eq. (5.35 to take proper account of the behavior de-
as otherwise we will have overcounted them. Using EQyceqd from many-body perturbation theory in the hot, dense

(5.32 to eliminate the dependence on the matrix elements . . . ~ .
which involve the derivatives, we obtain ﬁmlt. Th_e generalized versions & andV with the damping
factors included are

k)= 1—E(m—*)A 2F(y?) |E)(k
a(K)=|1- 5| = |AQYF(y?) [Ex(K) e
3¢? (m*) R I Ei=Tor, 92y, and
T ar, 1= JAQYTFYI) | FOY)
9 1 r2 2 2
Z_Z V| 7 ~ 3 .
X 5 3<¢)\(r)|r§|¢)\(r)> V(Flv---arz)zz_i)F(yz)|:Z_ %;1 (:_IJ)) }
4(3\18 1[m* 2.2
e 3
X <¢A(r)|7|¢x(r)>—mg(y ) |- (5.34

The generalized results for the exchange energy are given

The pressure, free energy, etc. related to this revised equati(?P( definingA({) through an equation similar to (.19 as

follow directly from its energy spectrur(b.34 and its de-

rivatives by Eqs(2.5—(2.9). These derivatives are discussed 5

in Appendix A. The solution for this energy spectrum willbe _ _~

discussed in Appendix B, and in Sec. VI. wZry
These results may be generalized to ions of ch@rge-

companied byZ electrons each. We begin this discussion

with the extension of Eq(5.1) to Z>1. Again we use the

Heitler-London atomic approximation, which will be valid in

the cold dilute limit. It is

2

3 1/3 2¢e 3 1/3
(;) 5_4/3X(Z§):_K§_1/3(¥) f1d2({2)]

+ 3kT Y2 A Tsd 2(£2)],
(5.37

where the valu€Z replaces the valugin definition (3.1) of

2 Z. The solution of Eq(5.37) is

he s o Z€ L
ﬁ[k —2Ik-Vj—Vj]—r—j A\ (Fi,...F7)

z
>
j=1

2 3

13 _
A(§)=§§2/3(_) {quz[z(zm X(Z)l(nZ8)

fsd 2(20)]

e
7=l

N[

*

f2),

+ SA(F1, . F)=E\(K) by (F1,...

v

(5.35 (5.39

wherer— means differentiation with respect fp. The same
value ofk is used in exp'@rj-) for all 7} in order to maintain

With these generalizations ©>1, we propose a modified
version of Eq.(5.35),
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2 #2 e, 26 3Zé o & @ 3¢? ) ri\?
JZl{Zm*[k2—21k-VJ—V,-]—r—j+mg(2y2)}¢x(r1,---,rz)+[ sz#l |9I_Fj|+2—er(y2)[Z— 5121 (E)
4( 3 1/3 2,2 .
3 w_g) f1/z[Z(Z§)]”¢A(F1----,Fz)+ 5r, F(Y?Z?) §p(F1,...F) =Ex(K) @y (F1,... F2), (5.39

wherem* is again given by Eq(5.33), with A(¢) now given by Eq.(5.38. Finally we need the generalized expression for
ex(K). Itis

- 1({m* ye . 3e? m* o X
€,(K)= 1—5 o A(DYF(y) E"(k)_4_rb 1- o A(DYF(y9) | Fy)| Z

2

1§ _ . rj R ) 4 3 )1/3 1/ m*
- §j:1<¢>\(r1----arz)| r‘g|¢>\(r17---:rz)>_§ w_g f1(2(Z9)) m

+ %‘ZzF(ZZyZ)] - 5( )A(Z)yzF(yz)

z e’ z e? 3z¢?
X| 2 (A (Frr P = da(Frre T2y = 32 (A (1, T |¢A(F1,---fz)>——g(ZyZ)}- (5.40
=1 I i# |75 =1l 10r,
|
These equations are intrinsically more difficult to solve than .1 * . 3e?
the ones foiZ=1, and | shall not take up this subject here. ek =51+ )&\ + mg(yz)
2 1/3
VI. SPHERICAL CELLULAR MODEL FOR HYDROGEN + EF(yZ)[%— (w_g) fl,g[z(g)]}
The basic equations for our spherical cellular model for e m*[e?
hydrogen were derived in Sec. V. | take note that this model +( ¢, A(F)|{ ST
has not been refined to take account of physically relevant ’ 2r  2m|r
molecular hydrogen, nor does it take account of any solid 022
crystalline phase. It looks at only the gas and fluid phases. + —=F(y? ]|¢| NG (6.3
The purpose is not to investigate solid hydrogen, as there is 2r, '

already a great body of work on this topic. The molecular, " -
states which are very relevant physically could be include 5hzegr))eg(’5_gj)agggq(5%r§_glven by Eqs(5.20), (5.26), (5.27),

by including two protons and two electrons in each cell, but' eyt we follow the procedures used for the spherical cel-
the theoretical structure requires some modification, and thg,ar model of an ideal gas developed in Sec. IV, except that
numerical work increases significantly. This extension Willthe starting guess fop is now taken to be KT plus the
not be part of the present work. For numerical purposes, it i?owest eigenvalue. We treat’ = —(iﬁzlm*)IZV as a per-

convenient to rewrite the basic equations in terms of turbation, and solve the rest of the equation as resolved in
spherical coordinates. In order to apply these methods, it is
R _ 3e2 necessary to extend the computation of the root-mean-square
SH\(k):EM(k)—Wg(yZ) deviation of the eigenvalues over each nearly degenerate
b block to our present case. In Appendix B we discuss the
character of the degeneracy structure of E6.2) with

e? 3\13 t

- r_F(yz)[E_z(w_g) flxz[Z(é“)]}- (6.1)  |k|=0. There we find that the states are divided into ideal-

b gas-like states, jumper states, and Coulomb-like states.
Again, as in Sec. 1V, we will use to denote thevsth excited

The subscript\) has been expanded here to\) to empha- ~ State, that is thes+ 1st level. _ o

size the resolution of the eigenfunctions in spherical coordi- For the ideal-gas-like statés +1> o with o defined in

nates. Thus Eq5.32 becomes Appendix B, Eq. (.4.2]). continues to be valid W}thn* re-
placingm. For uniformity, the subscripb to A will be re-
placed by (,n). For the case of the Coulomb-like states

h%k* ik? G (F hz (w+1<0), if we defineL to be the lesser of the maximum
2m* o (F)— m* V() — 2m* VEgi(r) value ofl considered andb=n+1, then, in this regime,
e’ er? N - 72K2 24 (nae\ L 27+
- 7+2—§F(y2)}¢A(r)=8|,x(k)¢x(r), (6.2 BAnK) | = =—— > T oy
b 2m* (L+1)2\2m* )72\ 3 ’

(6.4
and Eq.(5.34) becomes Finally, for the jumper states,
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72K2 Eq. (2.9), we need the derivatives of*, g(y?), F(y?), and
2m*) (317w ) Y3, f 2(£)], as well as of course tlf, with respect

to r,. The best method is to compute these quantities di-

rectly from their definitions by a direct numerical evaluation.
Tirw, (6.9  However in this paper | shall simply differentiate the repre-

sentations previously given. This procedure will insure ther-
where the set/is defined by Eq(B11) in Appendix B. If all Modynamic consistency, at the cost of some possible loss in
the jumper states are not included because the maximu@Fcuracy. Finally we need the derivative of the matrix ele-
value of| considered is too small, then this equation wouldMent appearing in Eq(6.3. This result is given by Eq.
have to be modified; however, the approximation to the(A1l). A_II these parts may be assembled mtoa_rather Ier_lgthy
physical situation would then be rather poor so we will not€XPression for the numerator of 5@.9) appropriate for this

h2k3 2 8
_*AI n(k) =
2m ' o(oc+1)(20c+1)
21'+1
3

x X

(" w)eJ

elaborate on this case. case. We take
This model is defined by Eq$4.22) and (2.9), which is
made explicit in Eq(4.23 for the ideal gas case. Here we . . h%k2 h3kE
need to use AR =E\0)+ 5 =5 A1(K), (6.7)
2me; 4(0) .
el,n:ﬁz—ké1 (6.6)  where the* is for the two energy values for eafi that we

used as the method to take account of all the different direc-

with the ¢, , defined by Eq(6.3). The derivative of, , with  tions ofk in Sec. IV. We will use the same method here for
respect tay, is given by Eq.(A5). For the complete evalua- the same purpose. If we differentiate E§.3), and use Eqgs.
tion of the derivatives necessary to put in the numerator of6.7) and (A5), then we obtain

9 - m* alnm*) B, 2k2+ﬁ2k§ e  Inm*
rbabem(k)——z 1+F 2+<9I—nrb gl,x(0)+W—WA|.>\(k) —( ()] ?ﬁ_y F'(y9)—|1+ 7 inr
2 et N 1 om* L WK A%k e(3
X\ 7+ Z_rgF(y) |1\ (7)) +ﬁrnrb 5|,x(0)+W—WA|,x(k) _E[ﬁ)g(y)
3 3 1/3 3 1/3
+1gYe' (v + %[F(yz)+>/2F’(>/2)]—>/2F’(yz)(77—g fl/z[Z(i)]—B(W—g) §f1/z[2(§)]F(y2)]
J ) e m*[e? é€%? ) R
+rb37b<¢|,>\(r)| ~ortom T+7§F(y ) ]|¢|,>\(r)>1 (6.8

where the last line is given by E¢A11). These equations The resulting pressure is roughly independent of the tem-

have been programmed in the same manner as described feerature. In Fig. 4 we plot the results for several tempera-

those of Sec. IV. tures. The ratio to the Thomas-Fermi cold curve is what is
There are several features which are expected from thiglotted. | have used the representation of Baker and Johnson

model. First, if the temperature is sufficiently high, the elec-[36]. It is, for reference,

trons will be mostly in the high-energy states which are very

much like those for the free-electron gas. This feature is the 513

so-called “hot curve” limit. As an illustration of this behav-  Pcold curve= 9-054 969 ’é;)

ior, in Fig. 3 we display the ratio of the electron pressure to

the ideal electron gas pressure for a temperature of 1000 eV,

as a function of density(The plot is versug, for ease of

comparison with Fig. 3.A line for the ratio exactly equal to

unity is put in to guide the eye. The fluctuations about this (6.9

line are reminiscent of those in Fig. 1. The values of the

pressure ratio greater than unity are undoubtedly due to thie megabars where is given by Eq.(4.26), p is the density

spherical approximation, as was the case in the sphericéth grams per cubic centimetew is the gram molecular

cellular model approximation to the ideal gas. weight, anda_~—0.772. It is to be noticed that the cold
Another feature which is to be expected is that when theurve produced by this model is lower than that of the

temperature is low enough the dominant feature is the repufFhomas-Fermi model, which is knowi8] to be too high,

sive pressure exerted by the compressed atoms as the dengtxcept in the limit of infinite density where both models

is increased. This feature is the so-called “cold curve” limit. reduce to the high-density ideal electron gas. As the tempera-

(1+1.596 5%~ +1.065 9522-)]9715
1+0.278 343 & 2 :
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FIG. 5. The total pressure for hydrogen in megabars as a func-
ion of the volume in cc per gram for the=1.5 eV isotherm. The
solid curve represents our model, and the dashed curve omits the
many-body terms. The dotted line shows the crossover pressure as
computed by the Maxwell construction for the solid curve. The line
short dashes shows the same for the dashed curve.

FIG. 3. The ratio of the electron pressure for hydrogen to thet
ideal electron gas pressure plottedyshe deBroglie density along
the T=1000 eV isotherm.

ture increases, the pressure begins to deviate from the co
curve at successively higher densities.

Th'e. spherl'cal cellular model of hydrogen predicts a phas$vhich corresponds to a tangent line in the plot of the Gibbs
transition. This fact can be seen, for example, by plotting therree energy to maintain its convexity property. | take this

total pressurdthe electron pressure plus the pressure aSSOCBpportunity to show some of the effects of the many-body

ated Wlttl‘? thel mot|fo$_ofl ghevce_lr%gr olf t“."as.s of .thE. a)tgm terms. The dashed curve is just the Heitler-London atom
Versus the volume fof = 1.5 €v. This plotis given in 9. with our boundary conditionsand it omits the many-body
as the solid curve. The_reglon where the pressure INCIeaSESms. The line of short dashes shows the Maxwell construc-
with the volume is physically unstable. The dotted line "®Ption for that curve. The pressure-volume plot with the tie

resent the pressure derived from the Maxwell construct|or|1ines drawn in is given in Fig. 6. The critical properties of
this model are:T.~1.83 eV, p.~0.11 gm/cc,P.~0.084
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FIG. 4. The ratio of the electron-gas pressures for hydrogen &
T=2, 5, 10, and 100 eV to the pressure computed in the Thomas-
Fermi model at the same volume and zero temperature. There is a FIG. 6. The total pressures for hydrogen in megabars vs the
dotted line included at unit ratio to guide the eye. The volume is involume in cc per gram for the following isotherms. In descending
cnt per gram. order,T=10, 5, 2, 1.83, 1.7, 1.5, 1.0, 0.5, and 0.1 eV.
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FIG. 8. The ratio of the total pressure to that of the sum of
he pressures due to noninteraction electrons and protons along
fe phase boundary. The critical point is indicated by a dot.
The expected value for atomic hydrogen indicated by a dotted
line.

FIG. 7. The phase boundary of the cellular model of hydrogent
in the volume-temperature plane and the pressure-temperatu[
plane. The dot is the critical point.

MB, {.~4.4, andy.~2.3. These values are at considerable
variance with the experimental values for the liquid gas criti-due to the many body interactions, which suggests a bound
cal point in hydrogen, which are roughly 33 K, 12.8 atm, andmany-body state of the system. The model produces a con-
0.03 gm/cc. Since there is no provision in the model as yetinuous curve through the two-phase region which is shown.
for two-atom molecular states, perhaps this difference is noDn the low-density side, the energy is higher than that of
surprising.V-T and P-T plots of the phase boundary are atomic hydrogen, and suggests the existence of some excited
given in Fig. 7. states, and perhaps a bit of ionization. Continuing to even
Magro et al. [31] found a critical point at about half the
temperature and twice the density of that given here. The*"
indicated that they believed that their phase transition is re s T T T T
lated to the molecular dissociation. Thus it is worthwhile to
consider the nature of the phase transition in the spheric:
cellular model of hydrogen. One method is to consider the
pressure along the phase boundary. In Fig. 8 we plot the tot:
pressure divided by the sum of the ideal electron-gas pre:
sure, and the pressure due to the center of mass motion of tl
electron and the proton. At least for low densities, if the
system consists of hydrogen atoms, this quantity should b
about one-half. A dotted line has been included at this leve
in Fig. 8 to guide the eye. A ratio of about one-quarter would
be expected in the presence of molecular hydrogen. Pressu
ratios higher than one-half would be indicative of ionization.
Lower pressure ratios would presumably indicate the forma
tion of groups of atoms bound together. What we see is the =~ [ o Lo
on the high-densityfsmall V) side of the critical point, the
pressure decreases very rapidly, which probably indicates S50 =
condensed state. On the low-density side, the pressure ral L L 1L 11 11 1 |
. . . 3x107' 1 3 101 3x10t 102 3x102 103 3x10° 10* 3x104 105
rises to about 0.69, and then declines. Another way to inves
tigate the nature of the transition is to plot the internal energy
along an isotherm which intersects the two phase-region. k. 9. The energy of the electron in the spherical cellular
Such a figure foif =0.5 eV is shown in Fig. 9. A dotted line  model of hydrogen at a temperature of 0.5 eV as a function of
has been added at the lowest-energy level of atomic hydraolume. The energy is in eV and the volume in%cper gram. The
gen. Here we see, in the high-density region, that as th@otted line indicates the binding energy of the electron in atomic
density decreases toward the phase boun@adjcated by a  hydrogen. The large dots mark the boundaries of the two-phase
dot) the internal energy drops below that of atomic hydrogenregion. The dashed curve is the result with no many-body terms.

electron

-100 -

-125 |
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FIG. 10. The ratio of the energy of the electron to the energy of FIG. 11. The ratio of the electron pressure in the spherical cel-

an electron in an ideal electron gas as a function of density for thgJlar model of_hydroge_n to the pressure of an ideal elgctron gas for
T=10 eV isotherm. The density is in grams per3cm the four densities which are the result of compression of 1, 0.1,

0.01, and 0.001 of a system of the density of liquid hydrogen. The
temperature is in eV.

lower densities, there is again a binding energy which is
greater than that of atomic hydrogen. | illustrate the effects
of the many-body terms by including a dashed curve which

omits them. As also seen in Fig. 5, the deviations from The guthor is pleased to acknowledge many helpful con-

the Heitler-London atom become apparent when the systefersations with J. J. Erpenbeck, M. E. Fisher, J. D. Johnson,

becomes mostly plasmalike. Indeed, the pressure ratio fofnq w. W. Wood.

T=0.5 eV drops to a minimum of about 0.33 at a volume of

about 6000 cc/gm, and then begins to increase again. This

increase is to be expected as one expects total ionizatign APPENDIX A: ENERGY DERIVATIVES

in the infinitely dilute limit for fixed temperature. One can o )

see this effect more clearly in the energy ratio plot for N order to use Eq(2.9) it is convenient to re-express

T=10 eV given in Fig. 10. Also note in this figure that, in de;j/dry, in terms of the wave function. First note that foin

the high-density limit, the increase in the free-electron enthe first Brillouin zone, it is to be remembered tikatan be

ergy (and pressujedue to the Pauli exclusion principle parametrized ak=#/r,, with # independent of the cell

swamps the effects of the Coulomb interaction and agai%ize Also we will use=r.5. and the derivative§ andv?2

leads toUjgeq as the asymptotic value @eecronr We CON- 0% pe taken here Witk?pr’espectfioln this notation, Eq

clude that the phase transition found to occur in this model i?6 2 becomes B

best described as a localization-delocalization transition. '
One further question of interest is the low-density ioniza-

tion profile predicted by this model. The Saha form{AZ] £2

suggests that

ACKNOWLEDGMENTS

o2 (AR VA1, §)+ V(1o 5)(1b.5)
7= 1 | 6.10 EP(ry.p). (A1)
1+AZ expx/T)

If we now differentiate with respect to,, and denote the
whereA is a constant, ang¢=13.5978 eV is the ionization partial with respect ta,, by an overdot, we obtain
potential for atomic hydrogen. For isochores, this equation
suggests that a plot againsTWould be appropriate. | give )
such a plot in Fig. 11 for four different densities. The curves a7 (2 m*
could be extended to the phase boundaries, but they are mostom* r2 ry =3
relevant to ionization behavior while they are positive. Even
here the pressure probably understates the degree of ioniza-
tion, as there may well be some clumping of atoms which
would give a negative contribution to the electron pressure. . . ,
This issue requires further investigation. X Py, p)+[V(ry,p)—Eld(ry,p)=EP(ry,p). (A2)

><K2—2iz-v*—v2>¢<rb,5>

2
(K2—2ik-V—V?)

+V(rbaﬁ)¢(rbaﬁ)+ Zm*rg
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The next step is to multiply EqA2) by ¢* (r,,p)df, and  The boundary condition@n spherical coordinat¢sre easier

integrate over the unit cell. The result is to describe if we make the usual substitutiam(ry,,p)
n 42 =rppd(ry.p). Then, necessariy(ry,,0)=0. For the case
— r_+W rﬁfdﬁ ¢*(rb,ﬁ)[ T2 (K2=2ik-V—V?) of odd-parity states, we also must hawuér,,r,)=0. For
b m=ry

even parity,ﬁ¢(rb,r)/ar|r=rb=0 implies thatpau(ry,p)/

R ) ) af . R dpl,—1=u(ry,p)|,-1, which, by taking the partial with re-
X@(rp,p)+V(rp,p)d(ry 'P)] “bf dp ¢*(ry.p) spect tor,, gives directly the remaining boundary condition
. that gu(ry,,p)/dp|,—1=U(ry.p)|,~1 for states of even par-
: m* ity. As these boundary conditions are the same as for the
X[ V(rp.p)+ b + W) eigenfunction solutions of EqA1), we may expand

XV(fb,ﬁ)P(fb,ﬁ)Hﬁf dp ¢*(ry.p)

I \(p-p) -
— =2 a,61,(T.h). (A7)
( £2 ) . . dry VFEA
(k°=2ik-V=V)(rp,p)
2m*rj b
R . R . To express the solution, it is convenient to define the quan-
+[V(rp,p) —El@p(ry.p) | =&, (A3) tities

where use has been made of the normalizatio.off we

now use Eq(Al) on the first two lines of EqA3), integrate _ e? 1 .
by parts in the last three lines so that the derivatives act on Vo (I.N)= E<¢|,V(fb,p)|P [ piA(Tp.0)),
¢* instead of¢g, and use Eq(Al) again, we obtain (A8)
- [ 2 srri[ as o, ﬁ)[v(rb p) ¢
* 1 ] - -
b M Hu(l,h)=r—<¢|,y(rb,p)|p2|¢|,x(rb,p)>-
i i
+ E—'—W V(rb,ﬁ)}qﬁ(rb,ﬁ)
42 The next step is to substitute EGQA7) into Eq. (A2), to
_ rf f ds ﬁ-[¢*(rb,ﬁ)§¢(rb,ﬁ) multiply on the left by ¢ (ry,p)dF for v#N\, a_nd_ to inte-
2m grate over the cell. If use EqAl), we can eliminate the
_ ¢(rb ,ﬁ)V}b*(rb )+ 2iR* (1, ,5)('1)(”) A1, derivative and the explicitik-dependent terms. The result is
(A4)
] . e2 p2y? 1 m*
where [dS is over the surface of the cell, andlis the (g —g )a = (oD 5 F (YD) —| —+ —
outward-pointing normal. The last two lines in E\4) ' R 2ry , m

vanish because of the periodicity. That is to say, the value of

the ¢'s is the same on opposite sides of the cell, but the <
normal vectori points in opposite directions, so that these

contributions cancel each other. Thus we conclude that

1 1, 5 >
;+§P F(Y9) | {|dia(rp.p)).  (A9)

€ N d Inm* ot 3j 43+ oy . Thus,
rbé,Tb__ JInr, g | dpd™ (rp,p)|ruV(ry,p)
d Inm* - - i \(p,p)
+| 2+ 9 |nrb )V(rbap)}(ﬁ(rbyﬁ’)- (AS) rbT
We really needde , /dry,, so, in addition, we need, by &1, (Ip,P) 4 Inm*
Eq. (6.3), to differentiate the further term SA 6. 1+ inrg V,(I,N)
J 2 m* 2 2.2 1 g1 *
— VP I DT =y = nm )
arb<¢"%(”|[ 2r T om| Tt 23 Fy )H|¢|,>\(r)> +5 1+m)F(y2)—y2F (yz)}HV(I,A)].

= (Vo) + (BN )+ (Bl {V}| $) (A6) (A10)

schematically. This formula requires the value&'ﬁtﬁfb )
If we substitute the results of EGA5) in Eq. (A2), then we  The substitution of Eq(A10) into Eq. (A6) gives, for the

obtain an inhomogeneous differential equation ddgr,,p). needed cask=0 whereV andH are real, the result
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2 m*[e? e2r2F ) ) & T om* P fd* R
rb&r (Bia) =5+ 5 +§b3' (Y2 [ {1n (1) T mE a7 |1 df (D)
3 Inm* | [ m* D +1 1+a|nm* " e2+e2r2F N
dlnry /| m (M3 aInry, r 20 (y9) | ()

m*F 2B
o FODBAN)

XF(y?)—y%F'(y?)
1 d Inm* m*F ) 1/m* 1
ik m YIS T

d Inry
d Inm*
2\ 21 (42
1+ (ﬂnrb)F(y) YF'(y )ch,x)

X

1 m* *

2m 4 Inr, 7 inr, AN

1 2 _m_* 2 21 (4,2
+ 2RI ] = =[RS Ty (y) THALA),
(A11)

where we define the further quantities

ALV =D,

Fn &

[V,(1,0)]?
&

=S, VAR

Al2
vEN El,v_5|,)\ ( )

Thus the substitution of the results of E¢&5) and(A12)

into Eq. (2.9, plus some further straightforward differentia-
tions, gives, via Eq(6.3), an explicit expression for the pres-
sure. Likewise, we obtain an explicit expression for the

Gibbs free energy by means of this result and €q10.

The computation ofje;/JT|, needed in Eq(2.7) pro-

2 ! 2
+—(y3)—yjdr & (NI2$(1). (Ald)

del aT now follows by straightforward differentiation of Eq.
(6.3 with respect tdl. It is to be noted that, as in E¢AG),
dldT of the same matrix element is also required. Again if
we use the standard substitutiafr)=r ¢(r) for the radial
part of the wave function, we findu/dT=0 for r=0, and
also forr=r, for states of odd parity. For states of even
parity, the other boundary condition is

d2u(r) 1 au(r)
adT 1 JT

for r=ry. (A15)

Again we find that these boundary conditions are the same as
those satisfied by the eigenfunctions of E41), so we can
make the expansion

d ry.p
%bp): E bl,vd’l,y(rb,ﬁ).

VFEN

(Al6)

Proceeding as above, we find

- AP \(Ip,P) _ &\ (rp,p) | 9 Inm*
(9T VFEN 5|’,,—g|’)\ (9 InT

X[V, (I,N)+ 3F(YHH,(1,N)]
- %yZF’(yZ)Hy(I,A))- (A17)

Thus we obtain, again for the needed clse0,

ceeds in a similar manner. It begins with the differentiation

of Eq. (6.2) with respect tol as at Eq(A2). The result is

e? m*[e2 e?r2

Lﬂ—<¢|x r)|[——+ﬁ - 2—r§F(y2)H|¢|,x(F)>

_ﬂh—z k2_2'lz ﬁ_vz >
(9T Z(m*)Z ( IK- )¢(r) _ d |nm* (m* _1 A(l )\) * (y2)
5 2 ) dInT \ m d InT
e r 2 h 2 2 é’q&(r)
—5F'(yA)Y2 (1) + 5— (k*—2ik- V- V?) m* 9 Inm*
2r 2m 20 2} 2 ) 2
—YF'(y) |F(y)B(,N)+ +1 F(y
) - R m d InT
Ve ¢<r> ok
T g PO E | = G, (A13) p

(m* ) 5 5 1 om

o 1y“F'(y9)|C(, )\)+2 In T[VA(I N)
where use was made d{y?)/dT=—y?/T. Again the next
step is to multiply byg* df on the left and integrate over the
spherical cell. As in the transition from E@A3) to Eq. (A4)
the operators acting od¢/JdT are, by an integration by
parts, made to act o* instead, and then by means of Thus the substitution of the results of EgA14) and (A18)
Schralinger’'s equation eliminated in favor of some surfaceinto Eq. (2.7) plus some further straightforward differentia-
terms. These terms cancel as they did in @¢t). By further  tions gives, via Eq(6.3), an explicit expression for the in-
use of Schrdinger’s equation we can eliminate the matrix ternal energy, which, together with E(R.6), also gives an
elements depending on derivatives, and thus obtain explicit expression for the entropy.

*

1 2 _m_ 271 (4,2
F RN 5=y F (PH(I0). (AL8)
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FIG. 12. Some of eigenvalues in units of 4 Ry for the Coulomb ~ FIG. 13. Some of the eigenvalues in units of 4 Ry for the Cou-
oscillator potential of Eq. (B7) with D:% and B lomb potential for hydrogen. The dotted line connects the eigenval-
= (3@ H)?3y2(F=1). The jumper states are connected by solidUes characterized by 27&+[(I+1)/2].
lines. The Coulomb-like states are connected in groups by dotted o
lines, and lie below the jumper states. The ideal-gas-like states alé we make the usual substitution

also connected in groups by dotted lines, but lie above the jumper
states. Ri(p)=ui(p)/p, (B6)

APPENDIX B: COULOMB-OSCILLATOR EQUATION then Eq.(BS) reduces to

The following Schidinger equation arises in Secs. V and ,d?ui(p)

k=0 +(A+Bp+Cp®+DpYui(p)=0, (B7)
VI (for k=0) when the many-body effects are taken into PTgpr T(AFBeF T DpIU(p

in th h h :
account in the manner that we have proposed where nowu;(0)=0, and Eq.(B3) becomes

2
e
T+ar2

2
—Zh—mv2¢(r*)— H(F)=Ep(F)  (BY) u(1)=0, | odd, u/(1)=u,(1), | even. (BS)

. . . . . .. We now have the degeneracy of thiet2l m states for each
This equation can be separated in spherical coordinates in tr%G(‘)Iution of the radial equation. For both the Coulomb poten-
usual way to yield the radial equation

tial, and the harmonic-oscillatorm& 0) potentials in an in-

#2(1d _d 11+ 2 finite cell, there is further eigenvalue degeneracy. If we sub-
i aﬂa_ —7 R(r)— T+ar2 Ri(r) stitute the series expansion
BRI (B2 u(p)=p', agp (B89)

with the boundary conditionsz,(0) is finite and
into Eq.(B8), then the indicial equation implies that=1+1
Ri(rp)=0, | odd, Ri(rp)=0, | even. (B3) or y=—|. The second case is ruled out by the boundary
conditions, so we select the first case. Thus we obtain the

If we use the notations recursion relations

2mér, _ 2mEr a=0

j ’ <o| a :11
T’ _77 j J 0

A=—I(1+1), B=

aj=—[j?+(21+1)j1 *(Baj_,+Caj_»+Daj_y),

2mary r
=R PTo (B4) j>0. (B10)
then Eq.(B2) becomes A straightforward analysis indicates thaj decrease like
(j1) “Y?whenD #0, so this series converges for all finjie
2d2R|(p) dR(p) [For a>0 the regular solution oscillates very quickly like

exp(Gi/Dp?), for largep, but this feature is not of concern to
(B5) us here as we are only considering the rangep&1.] For

iy +2p dp +(A+Bp+Cp?+Dp*R|(p)=0.
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the given the values 0B and D, the value ofC must be holds, and we call the set of,{)’s the set7. | observe that

adjusted to satisfy the boundary conditions. For the case dhat all the _jump_er states lie ir_1 a f_airly narrow banq of en-

Eq. (6.2, D= F(y?)B andB=(3a/¢)?32. ergy, so in line with our approximation in Sec. IV, | will treat
In order to implement our approximation scheme to in_them as nearly degenerate. As an illustration in Fig. 12, |

clude the effects of the operatbr’ = —(iﬁZ/m)IZV for the show a sample of the structure for= 3B (its maximum

. 74 . .
Coulomb-oscillator equation, we need to consider the degenv-alue for hydrogen at a compression ob40 " times its

: normal density. The Coulomb-like states are very close to
eracy and near—degeneracy. structures of the elgenvaluesb?ing degene?/atéon this scalg The ideal-gas-like s?;ates in
have computed them numerically by the same methods us%ﬂee low levels show a noticeable variation within our nearly

in_ Sec. IV. The first obs_ervation is that_for the higher ener'degenerate groups, as was also the case for the ideal-gas
gies, the states for whics+[(l+1)/2] is a constant aré  giataq tabulated in Table I. The shift between fheO case
nearly degenerate, as we qlso saw for the ideal gas accordinghy theF=1 case displayed here is imperceptible for the
to Eq.(4.17), where agairs is the level number antlis the  coylomb-like stategon this scaleand for the ideal-gas-like
angular momentum index. The second observation is thatates is about one or two dot widths. For intermediate com-
when the system is sufficiently dilute, the very lowest levelspressions, the low-lying states are noticeably effected by the
follow the degeneracy pattern of the Coulomb problem. That corrections, but the higher states not so much. For high
is to say, the states for whick+1 is a constant are very compressiongfor example, 20 times normal densitiethe
nearly degenerate. There is a fairly sharp transition in theffect of theF correction is not visible on a plot similar to
eigenvalue structure as it jumps from one regime to theFig. 12. The effective-mass correction only affetisnd not
other. If o is the highest level in the Coulomb regime for y. Since C=(3/#/¢)?¥E/KT), the value ofE/KT is just

I =0, then this jump occurs between the levelando+1  that for the same value of and a different value of. Thus

for =0. The marker forr is the condition that the energy- the degeneracy structure of the eigenvalue spectrum is not
level gapEy,+;—Eg, is a relative minimum among the affected by the mass correction, although the values them-
energy gaps. There then remains a numberlgf)(states selves are, of course.

which are in neither regime but lie in the jump. | call them  We illustrate in Fig. 13 some of the eigenvalues for the
jumper states. There awg(oc—1)/2 of them, or, when the Coulomb potential in the case of a compression of 0.2 times
degeneracy of thel2-1 m states is taken into account, there normal liquid hydrogen density. The dotted line connects the
are o(o0—1)(20+1)/2 of them. Specifically, they are the eigenvalues for whick+[ (I +1)/2]=27. This identification

states for which corresponds to that for the ideal gas for a set of nearly de-
141 generate states. It is to be observed that, relative to the ei-
m Sl+1D)<A<o— B11 genvalue spacing, these states are nearly degenerate. A little
o ) 7 2 } (B1Y) even-odd fluctuation can be seen.
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